New Technique for Polymer Density Estimation

WILLIAM M. MALONE and RICHARD ALBERT, N L Industries, Inc., Hightstown, New Jersey 08520

Synopsis

A general equation is derived for estimating polymer density for amorphous polymers. The method is based on the molecular weight and parachor of the polymer repeat unit to give the limiting density.

INTRODUCTION

Polymer density, although one of the most basic measurements for obtaining polymer properties, is not always reported or used.^{1,2} The importance of density is appreciated by studying the recent work of Holiday and Holmes-Walter.³ Undoubtedly, further work will find additional applications of density to the elucidation of polymer properties.

The method of Van Krevellen and Hoftyzer⁴ for predicting polymer densities based on polymer repeat unit structure has the serious limitation of requiring hard-to-obtain experimental data and of rigorously applying only to those polymers with previously investigated structural units. Since many new polymers are synthesized daily, this report presents a method for estimating polymer densities unfettered by the limitations of the structural unit molar volume technique. Combining this work with that of Holiday and Holmes-Walker will provide the researcher with a powerful predictive tool in selecting those polymer structures having desired properties in advance of synthesis.

THEORY

Recently, the utility of refractive index measurements for polymer characterization was demonstrated.^{5,6} Those investigations demonstrated that the ratio of parachor to molar volume for a homologous series approached a limiting value (Table I). The parachor expressed as a general power series in terms of molar volume,

$$P = a_0 + a_1 V_m + a_2 V_m^2 + \dots$$
(1)
2457

© 1973 by John Wiley & Sons, Inc.

Compound	$Density_4^{20}$	Molecular weight	$\begin{array}{c} \mathbf{Molar} \\ \mathbf{volume} \ V_m \end{array}$	Parachor P	P/V_m
CH ₃ (CH ₂) ₃ CH ₃	0.6262	72.151	115,220	231.9	2.012
$CH_3(CH_2)_4CH_3$	0.6603	86.178	130.513	272.2	2.088
$CH_3(CH_2)_{13}CH_3$	0.7685	212.422	276.411	634.9	2.299
$CH_3(CH_2)_{14}CH_3$	0.77331	226.449	292.831	675.2	2.304
$CH_3(CH_2)_{30}CH_3$	0.8124	450.883	555.001	1320.0	2.381
$CH_3(CH_2)_{s1}CH_s$	0.8136	464.910	571.423	1360.3	2.381
$CH_3(CH_2)_{32}CH_3$	0.8148	478.937	587.797	1400.6	2.381
$CH_3(CH_2)_{33}CH_3$	0.8157	492.964	604.345	1440.9	2.387
CH ₃ OH	0.7914	32.042	40.488	85.3	2.105
CH ₂ CH ₂ OH	0.7893	46.069	58.367	125.3	2.146
$CH_3(CH_2)_2OH$	0.8035	60.096	74.793	165.3	2.212
CH ₄ (CH ₂) ₃ OH	0.8098	74.123	91.532	205.3	2.242
CH ₃ (CH ₂) ₈ OH	0.8273	144.258	174.372	405.3	2.326
CH ₃ (CH ₂) ₉ OH	0.8297	158.285	190.774	445.3	2.336
$\begin{array}{c} \mathbf{CH}_{2}\mathbf{CH}_{2}\mathbf{CH}_{2} \\ \\ 0 \\ 0 \\ \end{array}$	0,9757	196.295	201.184	486.6	2.421
$ \begin{array}{c} 0 \\ CH_2CH_2CHCH_2CH_2 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{array} $	1.0172	300.448	295.368	734.4	2,488
$ \begin{array}{c} & & & & & & \\ CH_2(CH_2CH)_2CH_2CH_2 \\ & & & & \\ & & & & & & \\ \phi & & & & & & \\ \end{array} $	1.0215	404.602	396.086	982.2	2.481

TABLE I Parachor/Molar Volume Ratio for Selected Homologous Series

can be truncated to a linear relation,*

$$P = a_0 + a_1 V_m \tag{2}$$

and was rearranged,

$$P/V_m = a_0/V_m + a_1$$
 (3)

so that a limit in a value of V_m was approached, a condition always fulfilled for high polymers:

$$\operatorname{Lim}\left(\frac{P}{V_m}\right) = a_1$$

$$V_m \to \infty.$$
(4)

Parachor and molar volume were related to surface tension and density (Sugden's⁷ relationship):

$$\gamma = \frac{P^4(D-d)^4}{M^4} \tag{5}$$

* Note added in proof: A general power series was used to fit data; however, through examination of experimental data, a linear fit was found adequate to express P as a function of V_m , which is consistent with Sugden's relationship. A linear fit gave $P = -4.482 + 2.460V_m$, and a cubic fit gave $P = -4.807 + 2.478V_m - 3.113 \times 10^{-5}V_m^2 + 1.267 \times 10^{-8}V_m^3$. In every case the fraction of the variability in the data accounted for by the regression equation is essentially unity, with consequent negligible residual variability (the example used was linear alkanes as polyethylene models). Thus, a linear relation was evaluated at the Lim (P/V_m) as $V_m \rightarrow \infty$.

where γ is the surface tension, D and d are densities of a liquid and its vapor, respectively, P is the parachor, and M is the molecular weight. Hence, neglecting d, eq. (5) reduced to

$$\gamma = P^4 / V_m^4 \tag{6}$$

where V_m was the ratio M/D; i.e., $\gamma^{1/4}$ equals a_1 of eq. (4):

$$P/V_m = \gamma^{1/4} = a_1.$$
 (7)

In Table II are found values of $\gamma^{1/4}$ which are constant for a wide range of polymer types and structures.

Values ⁴ of $\gamma^{2/4}$				
Polymer	γ	$\gamma^{1/4}$		
Poly(vinyl fluoride)	28	2.3003		
Poly(tetrafluoroethylene)	30-35	2.3403-2.4323		
Poly(1,1-dihydroperfluorooctyl				
methacrylate)	30	2.3403		
Amylopectin	35	2.4323		
Poly(chlorotrifluoroethylene)	31	2.3596		
Polyethylene	31	2.3596		
Poly(hexafluoropropylene)	31.5	2.3691		
Poly(decamethylene sebacamide)	32	2.3784		
Poly(methyl methacrylate)	33-34	2.3968-2.5755		
Polystyrene	33-35	2.3968-2.4323		
Poly(11-aminoundecanoic acid)	33	2.3968		
Cellulose	44	2.5755		
Poly(vinylidene chloride-co- acrylonitrile)				
80:20	38-44	2.4828 - 2.5755		
91:9	38	2.4828		
Poly(octamethylene suberamide)	34	2.4147		
Poly(nonamethylene azelaamide)	36	2.4495		
Poly(vinyl alcohol)	37	2.4663		
Amylose	37	2.4663		
Starch	39	2.4990		
Poly(vinyl chloride)	39	2.4990		
Polyacrylamide	35-40	2.4323-2.5149		
Poly(vinylidene chloride)	40	2.5149		
Poly(6-aminocaproic acid)	42	2.5457		
Poly(ethylene terephthalate)	42.5-43	2.5533-2.5607		
Casein	43	2.5607		
Poly(heptamethylene pimalamide)	43	2.5607		
Wool	45	2.5900		
	average ^b	2.466 ± 0.031		

TABLE II Values^a of $\gamma^{1/4}$

• Values from reference 1.

^b 95% Confidence interval estimate.

2459

A relationship was obtained for the limiting density ρ_{lim} for any high molecular weight polymer as a function of the molecular weight M_{ru} and a parachor P_{ru} of the repeating unit,

$$\rho_{\rm lim} = a_1 \frac{M_{\rm ru}}{P_{\rm ru}}$$
(8)

The derivation of eq. (8) followed from the previously reported⁵ dependency of refractive index upon density ρ , the specific refractivity per electron K_{α} , molecular weight M, and the total number of electrons g in the chromophoric center:

$$\left(\frac{\eta-1}{K_{\alpha}}\right)\frac{M}{g} = \rho. \tag{9}$$

In a polymer, M and g were composite terms equal to the sum of endgroup (eg) and repeating unit (ru) contributions:

$$\left(\frac{\eta-1}{K_{\alpha}}\right)\frac{2M_{\rm eg}+XM_{\rm ru}}{2g_{\rm eg}+Xg_{\rm ru}} = \rho.$$
(10)

As X, the number of repeating units approached and infinitely large number ρ approached ρ_{lim} :

$$\rho_{\lim} = \frac{\eta - 1}{K_{\alpha}} \left(\frac{M_{\mathrm{ru}}}{g_{\mathrm{ru}}} \right). \tag{11}$$

The equation was simplified to eq. (8) using a relation previously derived⁶ between the refractive index η , the molar volume V_m , and the number of bonds per parachor at high molecular weight, β_{lim} :

$$\eta - 1 = \frac{K_{\alpha}\beta_{\lim}P}{V_m} = a_1 K_{\alpha}\beta_{\lim}.$$
(12)

Table III illustrates the general utility of eq. (8) for polymers of widely varying structure.

TABLE III Comparison of Calculated and Experimental Densities for Some Amorphous Polymers

	$ ho, { m g/cm^3}$		
Polymer	Calculated	Experimental	
Polyethylene	0.86	0.855-0.887	
Polystyrene	1.04	1.04-1.057	
Poly(methylpentene-1)	0.86	0.83	
Poly(tetrafluoroethylene)	2.02	2.00	
Polyformaldehyde	1.24	1.25	
Poly(dimethylsiloxane)	1.13	1.14	
Poly(ethylene oxide)	1.09	1.13	
Nylon 66	1.01	1.069-1.09	
Poly(vinyl acetate)	1.16	1.191	
Poly(vinyl fluoride)	1.25	1.385	

CONCLUSIONS

A simple but general equation based upon tabulated⁷ parachor values has been derived for estimating polymer densities from only repeat unit structures. The advantage of this method over others was that no new experimental information was necessary to obtain a good approximation to polymer density.

Holiday and Holmes-Walker³ used density to estimate such polymer properties as bulk modulus, Young's modulus, hardness, and coefficient of expansion. Future work will undoubtedly appear showing density to be applicable in calculating other polymer properties hopefully facilitated by the general method described above.

References

1. E. G. Shafrin, in *Polymer Handbook*, J. Brandrup and E. H. Immergut, Eds., Interscience, New York, 1966, Chap. III, p. 113.

2. O. G. Lewis, Physical Constants of Linear Homopolymers, Springer-Berlin, 1968.

3. L. Holiday and W. A. Holmes-Walker, J. Appl. Polym. Sci., 16, 139 (1972).

4. D. W. Van Krevellen and P. J. Hoftyzer, J. Appl. Polym. Sci., 13, 871 (1969).

5. R. Albert and W. M. Malone, J. Macromol. Sci.-Chem., A6, 347(1972).

6. R. Albert and W. M. Malone, presented at the IUPAC International Symposium on Macromolecules, Helsinki, Finland, July, 1972.

7. O. R. Quale, Chem. Rev., 53, 439 (1953).

Received December 6, 1972